

Share of energy sources in gross German power production in 2018

Source: Clean Energy

Renewable energy potential - Sun

Renewable energy potential - Wind

The need for energy storage

Production of electricity in Germany at 2013-06-17 Source: EEX

- Photovoltaic and wind power are decentralized fluctuating generators
- Fluctuations put a strain on electricity grids Expensive grid extensions
- (Re-adjustment through fast gas power plants)
- With a high proportion of renewable energy, storage facilities are necessary for times when no sun is shineing and no wind is blowing.

-> Decentralised energy storage

Storage possibilities

What is a flow battery?

- Arbitrary classical classification
 - Primary batteries
 - Secondary batteries
 - Fuel cells
- Flowing suspensions, reversible fuel cell, changing aggregate state, reversibility, Electrolysis, Galvanisation,...?
- Better: Classification by basic process types

Disc. process:

Contin. process:

$$\frac{\partial c}{\partial t} = C$$

Flow Batteries are electrochemical energy converter, which use flowing active materials!

15 years flow battery research at Fraunhofer ICT

H2020-EU.3.3.4. - A single, smart European electricity grid

LC-BAT-4-2019 - Advanced Redox Flow Batteries for stationary energy storage

LC-BAT-3-2019 - Modelling and simulation for Redox Flow Battery development

- Huge number of possibilities of organic active materials for redox flow batteries
- Laboratory testing is time consuming and costly
 - Chemical tests (e.g. solubility, stability)
 - Electrochemical half-cell tests (e.g. potentials, kinetics)
 - Cell & system tests (performance)
- Techno-economics ? -> CAPEX ?
- Behavior in the grid ? -> Levelised cost of storage?
- Only LCOS (levelised cost of storage (lifetime cost / lifetime energy throughput)) gives compareable values!

Table 1: Selected examples of inorganic redox pairs for RFBs. The cell color corresponds to the pH value of the electrolyte: red - acidic, blue - alkaline, orange - neutral, green - acidic and alkaline. Development stage: A - half cell studies, B - prototype tested, C - technology is commercialized, * or Br₃-/Br 1.06 V (based on polybromide formation), the potentials may vary depending on the electrolyte composition due to complex formation

Cathode		Mn ₂ O ₃ /MnO ₂	Fe(CN) ₆ ⁴ /Fe(CN) ₆ ³⁻	_cu/cu	1-/13	Fe ²⁺ /Fe ³⁺	VO²+/VO₂ ⁺	Br-/CIBr ₂ -	Br/Br ₂ *	NpO ₂ ²⁺ /NpO ₂ +	12/103	02-/02	Cr³+/HCrO₄⁻	CI-/CI ₂	Pb ²⁺ /PbO ₂	Mn ²⁺ /Mn ³⁺	Ce ³⁺ /Ce ⁴⁺	Co ²⁺ /Co ³⁺
Anode	Eº,V	0.15	0.36	0.52	0.54	0.77	0.99	1.04	1.09	1.14	1.2	1.23	1.35	1.36	1.46	1.54	1.72	1.82
Al/Al(OH) ₄ -	-2.31											В						
Zn/Zn(OH) ₄ -2	-1.22	В	В															
Zn/Zn ²⁺	-0.76				В	В	В	В	С					В			В	
Fe/Fe ²⁺	-0.45					В												
S ₂ ²⁻ /S	-0.43		В						С			В						
Cr ²⁺ /Cr ³⁺	-0.41					С			Α				В					
Cd/Cd ²⁺	-0.40					В												
V ²⁺ /V ³⁺	-0.26					В	С	В				В				В	В	В
Pb/Pb ²⁺	-0.13														В			
Sn/Sn ²⁺	-0.14								В									
H₂/H⁺	0.00					В	В		В					В				
Ti ³⁺ /TiO ²⁺	0.04					Α		Α						Α		В		
Cu ⁺ /Cu ²⁺	0.15			В											В			
Np ³⁺ /Np ⁴⁺	0.15									В								
Sn ²⁺ /Sn ⁴⁺	0.15					В			В									
Cu/Cu ²⁺	0.34														В			
l ⁻ /l ₂	0.54										Α							
Fe ²⁺ /Fe ³⁺	0.77															В		

Development of a model-based high-throughput screening method

Modelling for the search for new active materials for redox flow batteries

H2020-LC-BAT-3-2019

Project start: January 2020

Project end: December 2023 (4 Years)

7 Institutions, 4 Universities, 2 Research Organisations, 6 Companies (IEB)

Coordinator: Fraunhofer Gesellschaft (Germany)

5 Countries, 3 EU Countries, 1 H2020 Associated country (Switzerland), 1 External (Australia)

Project funding: 2.8 M€ 2.4 M€ (EU), 430 k€ (UNSW Australia)

H2020-LC-BAT-2019-2020 (LC-BAT-3-2019) -

Modelling and Simulation for Redox Flow Batteries

The objective is to develop mathematical models for numerical simulation and high-volume preselection of multi-species electrolyte flow and electrochemistry. Models should allow the characterisation of new chemicals and designs, the related charge, mass and heat transport mechanisms, identifying cell-limiting mechanisms, forecasting cell performance and optimising the design and scale-up. Of particular interest are performances in terms of cell voltage, energy and power density, reliability and cost.

The simulation models should be **validated with experimental examples** from known chemistries and representative prototypes, and show how new chemistries can be explored.

Introduction - Partner

Fraunhofer-Institute for Chemical Technology (ICT)

GERMANY

Fraunhofer-Institute for Algorithms and Scientific Computing (SCAI)

GERMANY

Technical University of Denmark (DTU)

DENMARK

CNRS-Laboratoire de Réactivité et Chimie des Solides (LRCS)

FRANCE

Zurich University of Applied Science (ZHAW)

SWITZERLAND

Karlsruhe-Institute for Technology (KIT)

GERMANY

University of New South Wales (UNSW)

AUSTRALIA

Introduction - Approach

Introduction - Approach

Electronic structure modelling of electroactive molecules

Computed vs. experimental redox potentials

Left, transformation from pH 0 to 7 and 13 is done using the number of protons at pH=0. Right, the slope of the Pourbaix diagram is updated at every pK_a .

Calculation of re-organisation energies

molecule	λ ₁ / eV	λ ₂ / eV	λ _i /eV
MV	0.228	0.297	0.263
EV	0.226	0.320	0.273
4-OH-TEMPO	0.496	0.462	0.479
AQS	1.485	1.601	1.543
BQDS	1.967	2.030	1.999

Electronic structure modelling of electroactive molecules

Beyond implicit solvation

- each data point is averaged over multiple cluster conformations
- n = 18: we haven't reached a plateau in $\Delta G_{\text{sol.}}$.
- Potential getting closer to experiment
- Manual cluster construction has reached limit

- 1. MD simulation in a water droplet (using GFN-xTB semiempirical method)
- 2. Extract uncorrelated snapshots
- 3. Extract cluster of water molecules corresponding to first solvation shell
- 4. Use cluster-continuum method to obtain solvation free energy and redox potential

Meso-scale modelling of the electrochemical interface

Consideration of

- Motion
- Electron transfer
- Adsorption/ desorption
- Dimerisation
- -> Calculation of electrode potential φ

Meso-scale modelling of the electrochemical interface

<u>Lattice-Boltzman modelling</u>

Velocity distribution of the electrolyte flow

• Carbon fiber; carbon foam; carbon paper electrode structure

LBM

GeoDict/ Tomography

• Simulate permeability of flow and the velocity distribution field

Postprocessing • Calculate theoretical/effective contact surface area (optimisation criteria)

Machine learning

• Optimise parameters of electrode structure (diameter, shape orientation/tortuosity, porosity, wettability/contact angle...)

'Effective' contact surface – slice of velocity distribution

Experimental validation

S NAR

Example: Electrochemical properties of TEMPO-OH

Concentration	D Randles-Sevcik	E° '(V vs	1-° (a a-1)	
(M)	(cm ² .s ⁻¹)	SHE)	k° (cm.s ⁻¹)	α
10-1	2.83.10-6	0.815	2.96.10 ⁻³	0.34
10-2	3.93.10-6	0.807	1.93.10-2	0.41
10-3	4.52.10%	0.806	4.47.10 ⁻²	0.36
10-4	4.46.10-6	0.,808	2.42.10-2	0.37

Experimental validation

Bridging the scales: connection of electrochemical double layer properties, porous media flow and continuum modelling of RFBs

- Development of a 0D-U-I-SOC cell model
- Simulations based on MV/TMA-TEMPO

Square Configuration

Hexagonal Configuration

Cell performance simulation and cell design optimisation

Micro Computer Tomography for electrode digitalisation

$$\Phi_1 = 0.92$$

 $\Phi_2 = 0.86$

 $\Phi_3 = 0.75$

Different colours indicate different porosities. Dashed lines represent the charging process and dotted lines represent the discharging process. The simulations assume a constant supply of electrolyte

Flow cell design optimisation

Aim: Finding an optimised cell design for intended operating conditions and desired redox pairs

2D homogenized VRFB Model

Optimisation Module

Optimal Design

WP6 - Stack and system level modelling

c_fix(2)=-1990 mol/m³ c_fix(2)=-1990 mol/m³ Concentration (mol/m³) Concentration (mol/m3) ▲ 1598 0.032 0.028 0.024 0.022 0.022 0.016 0.014 0.012 0.008 0.006 0.004

Current distribution of the 2D single cell of VRFB under different constant flow rates, left) flowrate = 30 mL/min right) flow rate = 5 mL/min

V(III) / V(IV) Species concentration of the 2D single cell of VRFB under different flow rate left) flow rate = 30 mL/min right) flow rate = 5 mL/min

Shunt current resistor networks for stack modelling

Cost analysis of redox flow batteries

• Identify components

• Find dependences (physico-chemical & economical ones)

Step 3 weight

• Measure the influences

Cost analysis of redox flow batteries

Values from laboratory scale flow batteries as starting point

Framework for high-volume pre-selection, data integration and design

Data flow

Data management

Fraunhofer

Calculated formal potentials vs. databases

https://redoxfox.scai.fraunhofer.de/

REDOX FOX - Prototype!

https://redoxfox.scai.fraunhofer.de/

Flow Batteries: From Fundamentals to Applications, 2 Volume Set

Christina Roth (Editor), Jens Noack (Editor), Maria Skyllas-Kazacos (Editor)

Hardcover

978-3-527-34922-7

December 2022

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 875489.

Contact

AA/Prof. (UNSW) Dr.-Ing. Jens Noack Fraunhofer Institute for Chemical Technology Joseph-von-Fraunhofer-Str. 7 76327 Pfinztal / Germany

jens.noack@ict.fraunhofer.de

www.sonar-redox.eu

