

- Huge number of possibilities of organic active materials for redox flow batteries
- Laboratory testing is time consuming and costly
 - Chemical tests (e.g. solubility, stability)
 - Electrochemical half-cell tests (e.g. potentials, kinetics)
 - Cell & system tests (performance)
- Techno-economics ? -> CAPEX ?
- Behavior in the grid ? -> Levelised cost of storage?
- Only LCOS (levelised cost of storage (lifetime cost / lifetime energy throughput)) gives compareable values!

Development of a model-based high-throughput screening method

Introduction - Partner

Fraunhofer-Institute for Chemical Technology (ICT)

GERMANY

Fraunhofer-Institute for Algorithms and Scientific Computing (SCAI)

GERMANY

Technical University of Denmark (DTU)

DENMARK

CNRS-Laboratoire de Réactivité et Chimie des Solides (LRCS)

FRANCE

Zurich University of Applied Science (ZHAW)

SWITZERLAND

Karlsruhe-Institute for Technology (KIT)

GERMANY

University of New South Wales (UNSW)

AUSTRALIA

Introduction - Approach

Electronic structure modelling of electroactive molecules

Computed vs. experimental redox potentials

Left, transformation from pH 0 to 7 and 13 is done using the number of protons at pH=0. Right, the slope of the Pourbaix diagram is updated at every pK_a .

Calculation of re-organisation energies

molecule	λ ₁ / eV	λ ₂ / eV	λ _i /eV
MV	0.228	0.297	0.263
EV	0.226	0.320	0.273
4-OH-TEMPO	0.496	0.462	0.479
AQS	1.485	1.601	1.543
BQDS	1.967	2.030	1.999

Meso-scale modelling of the electrochemical interface

Consideration of

- Motion
- Electron transfer
- Adsorption/ desorption
- Dimerisation
- -> Calculation of electrode potential φ

Bridging the scales: connection of electrochemical double layer properties, porous media flow and continuum modelling of RFBs

- Development of a 0D-U-I-SOC cell model
- Simulations based on MV/TMA-TEMPO

Square Configuration

Hexagonal Configuration

Cell performance simulation and cell design optimisation

Micro Computer Tomography for electrode digitalisation

$$\Phi_1 = 0.92$$

 $\Phi_2 = 0.86$

 $\Phi_3 = 0.75$

Different colours indicate different porosities. Dashed lines represent the charging process and dotted lines represent the discharging process. The simulations assume a constant supply of electrolyte

Framework for high-volume pre-selection, data integration and design

Data flow

Data management

Fraunhofer

Calculated formal potentials vs. databases

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 875489.

Contact

AA/Prof. (UNSW) Dr.-Ing. Jens Noack Fraunhofer Institute for Chemical Technology Joseph-von-Fraunhofer-Str. 7 76327 Pfinztal / Germany

jens.noack@ict.fraunhofer.de

www.sonar-redox.eu

