Status and perspectives of current flow battery technologies

Jens Noack^{1,2,3}, Nataliya Roznyatovskaya^{1,2}, Maria Skyllas-Kazacos^{2,3}, Chris Menictas^{2,3}

¹ Fraunhofer-Institute for Chemical Technology, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal, Germany

- ² German-Australian Alliance for Electrochemical Technologies for Storage of Renewable Energy, Mechanical and Manufacturing Engineering, University of New South Wales (UNSW), UNSW Sydney NSW 2052 Australia
- ³ University of New South Wales (UNSW), UNSW Sydney NSW 2052 Australia

6. Herbstworkshop Energiespeicher, TU-Dresden, Germany, 2022

PONSORED BY TH

f Education and Researc

© CENELEST

ICT

What is a flow battery?

IEC TC21/TC105 JWG7:

""Flow batteries are all electrochemical energy converters that use flowing media as or with active materials and where the electrochemical reactions can be reversed."

Fluid-fluid is Flow Batteries

ICT

Solid-fluid is Hybrid Flow Batteries

2

Overview of inorganic flow battery chemistries

Anode:
$$A^x \rightleftharpoons A^{x+z} + ze^-$$
Cathode: $C^y + ze^- \rightleftharpoons C^{y-z}$ Cell: $A^x + C^y \rightleftharpoons A^{x+z} + C^{y-z}$

	Cathode																	
		Mn ₂ O ₃ /MnO ₂	Fe(CN) ₆ ⁴⁻ /Fe(CN) ₆ ³⁻	Cu/Cu⁺	I-/I ₃ -	Fe ²⁺ /Fe ³⁺	V0 ²⁺ /V0 ₂ ⁺	Br-/ClBr ₂ -	Br ⁻ /Br ₂ *	NpO ₂ ²⁺ /NpO ₂ ⁺	1 ₂ /10 ₃ ⁻	0 ²⁻ /0 ₂	Cr ³⁺ /HCrO ₄ -	cl ⁻ /Cl ₂	Pb ²⁺ /PbO ₂	Mn ²⁺ /Mn ³⁺	Ce ³⁺ /Ce ⁴⁺	Co ²⁺ /Co ³⁺
Anode	E ⁰ ,V	0.15	0.36	0.52	0.54	0.77	66.0	1.04	1.09	1.14	1.2	1.23	1.35	1.36	1.46	1.54	1.72	1.82
AI/AI(OH)4 ⁻	-2.31											В						
Zn/Zn(OH) ₄ -2	-1.22	В	В															
Zn/Zn ²⁺	-0.76				В	B	В	B	С					В			В	
Fe/Fe ²⁺	-0.45					В												
\$2 ²⁻ /\$	-0.43		В			Ă			С			В						
Cr ²⁺ /Cr ³⁺	-0.41					C			Α				В					
Cd/Cd ²⁺	-0.40					В												
V ²⁺ /V ³⁺	-0.26					В	(C)	В				В				В	В	В
Pb/Pb ²⁺	-0.13														В			
Sn/Sn ²⁺	-0.14								В									
H ₂ /H⁺	0.00					В	В		В					В				
Ti ³⁺ /TiO ²⁺	0.04					Α		Α						Α		В		
Cu ⁺ /Cu ²⁺	0.15			B											B			
Np ³⁺ /Np ⁴⁺	0.15									В								
Sn ²⁺ /Sn ⁴⁺	0.15					В			В						_			
Cu/Cu ²⁺	0.34														В			
17/1 ₂	0.54										Α							
Fe ²⁺ /Fe ³⁺	0.77															В		

Iron/Chromium redox flow batteries (Fe/Cr RFB)

Fig. 3- NASA Redox Installation for Photovoltaic Energy Storage

Turlock 250 kW / 1 MWh Fe/Cr RFB © EnerVault

Disadvantages

- Catalysts/inhibitors required for anode
- Low energy and power density
- Energy losses through heating

- $\operatorname{Cr}^{3+} + e^{-} \xrightarrow{\operatorname{charge}} \operatorname{Cr}^{2+} \qquad \varphi^{0,+} = -0.42 \text{ V}$ Anode: $Fe^{2+} \xrightarrow{\text{charge}} Fe^{3+} + e^{-} \qquad \varphi^{0,+} = +0.77 \text{ V}$ Cathode: $\operatorname{Cr}^{3+} + \operatorname{Fe}^{2+} \xrightarrow{\operatorname{charge}} \operatorname{Cr}^{2+} + \operatorname{Fe}^{3+} U_{\operatorname{cell}} = 1.19 \text{ V}$ Cell:

Advantages

- Low cost of materials
- Very simple reactions
 - Low positive potentials (corrosion) H₂ Formation at the anode
- Last commercialisation by Enervault, California, USA (~2016)
- Only very few publications since 2000s

PONSORED BY TH

Increasing commercialisation interest in 2022

Zinc/Bromine redox flow batteries

Anode: $Zn^{2+} + 2e^{-} \xrightarrow{\text{charge}} Zn$ $\varphi^{0,-} = -0.762 \text{ V}$ Cathode: $3Br^{-} \xrightarrow{\text{charge}} Br_{3}^{-} + 2e^{-}$ $\varphi^{0,+} = +1.06 \text{ V}$ Cell: $Zn^{2+} + 3Br^{-} \xrightarrow{\text{charge}} Zn + Br_{3}^{-}$ $U_{cell} = 1.82 \text{ V}$

- Zinc deposition on negative electrode (hybrid RFB)
- Two electron transition of Zn (energy density)
- Bromine/Bromide on positive electrode
- High solubility of bromine

Zinc-Flow ... by Powercell

Electrica

Roth, Noack, Skyllas-Kazacos, Flow Batteries, Wiley-VCH 2022

https://www.youtube.com/watch?v=FbBnoTMfYvs US-President Obama @ ZBB Energy 2010

Kilovac

35 kWh Zn/Br race car ~1994 © Gerd Tomazic

Lex, P. J.; Matthews, J. F. Recent Developments in Zinc/Bromine Battery Technology at Johnson Controls. In *IEEE 35th International Power Sources Symposium*; IEEE: Cherry Hill, NJ, USA, 1992; pp 88–92. https://doi.org/10.1109/IPSS.1992.282047.

Advantages

- Low cost of materials
- High energy density ~80 Wh/L
- Uses microporous separators
- High cell voltage ~1,8 V

Disadvantages

- Zn deposition can have dendrites (stripping)
- Bromine is toxic (complexing agents)
- Complexing agents are expensive
- Bromine is aggressive (material stability)
- Moderate cycle life (~3000)
- Moderate current densities ~25 mA/cm²
- Only Redflow Australia is selling Zn/Br RFBs 2022

SPONSORED BY THE

Federal Ministry of Education and Research

CONTROL

Zinc/Bromine redox flow battery **Redflow Australia**

3 kW / 10 kWh ZBM3

© Redflow Australia

© Redflow Australia

Iron/Iron redox flow batteries

Anode:	$Fe^{2+} + 2e^{-} \xrightarrow{\text{charge}} Fe$	$\varphi^{0,-} = -0.44 \text{ V}$
Cathode:	$Fe^{2+} \xrightarrow{\text{charge}} Fe^{3+} + e^{-}$	$\varphi^{\scriptscriptstyle 0,+}$ = +0.77 V
Cell:	$2Fe^{2+} \xrightarrow{\text{charge}} Fe + Fe^{3+}$	$U_{\text{cell}} = 1.21 \text{ V}$

Fe/Fe RFB @ Fraunhofer ICT

- Very cheap active material (FeCl₂)
- Deposition of Fe on negative electrode (2e⁻)
- Hydrogen evolution as side reaction
 - Results in an increase of pH
 - Precipitation of Fe(OH)₂
- Slow Fe/Fe²⁺ reactions
- Only one company (ESS Inc. USA)

Hruska, L. W. Investigation of Factors Affecting Performance of the Iron-Redox Battery. J. Electrochem. Soc. 1981, 128 (1), 18. https://doi.org/10.1149/1.2127366.

SPONSORED BY THE

Iron/Iron redox flow battery ESS inc. USA

ENERGY WAREHOUSE™

ENERGY CENTER™

8

Porous Separator (+) Electrode: Carbon 4.1 Conductive Separator: (-) Electrode: Plastic Spacer **Compression Molded Composite**

Overview of organic flow battery chemistries

• Very young R&D area (~2015!)

9

© CENELEST

SPONSORED BY THE

Federal Ministry

of Education and Research

- Focus of many research groups worldwide, a few companies (Jena Batteries, Kemiwatt, CMblue, Lockhead Martin,...)
- Often separation between aqueous / non-aqueous

Overview of organic flow battery chemistries

Reasons for organic redox flow batteries:

SPONSORED BY THE

Federal Ministry of Education and Research

- Huge number of different active materials with different properties
- Abundant materials, Safe, non-toxic, Easy re-cycleable
- Non-aqueous RFBs with high voltage > High energy density possible (e.g. LIB-RFB)
- Aqueous RFBs with high safety and low cost

Organic redox flow batteries

JENA BATTERIES

SPONSORED BY THE

Federal Ministry

of Education and Research

© Jena Batteries

© KEMIWATT

© cmblu

Organic redox flow batteries

© Lockheed Martin

Vanadium redox flow batteries (VRFB)

Anode:
$$V^{3+} + e^{-} \xrightarrow{\text{charge}} V^{2+} \qquad \varphi^{0,-} = -0.255 \text{ V}$$

Cathode: $VO^{2+} + H_2O \xrightarrow{\text{charge}} VO_2^+ + 2H^+ + e^- \qquad \varphi^{0,+} = +1.00 \text{ V}$

Cell: $VO^{2+} + V^{3+} + H_2O \xrightarrow{\text{charge}} VO_2^+ + V^{2+} + 2H^+$ $U_{\text{cell}} = 1.25 \text{ V}$

- Invented 1985 by Maria Skyllas-Kazacos and co-workers at UNSW
- Uses only Vanadium as active material
- Moderate till high current densities up to several 100s mW/cm²
- Best studied RFB
- Most installed RFB
- Several companies with commercialisation worldwide

Advantages

13

© CENELEST

- Relatively simple
- Very high cycle life (>10.000)
- High power density possible
- Flexible design
- Recycling of Vanadium electrolyte
- No self-discharge (pumps off)
- High energy efficiency > 75 %

Disadvantages

- Redox couple potentials in the borders of solvent stability
- VO₂⁺ solutions are strong oxidizing agents
- Balancing of electrolyte necessary
- High fluctuations of Vanadium price

1st VRFB (non-flow) at Fraunhofer ICT 2008

Sum, E.; Skyllas-Kazacos, M. A Study of the V(II)/V(III) Redox Couple for Redox Flow Cell Applications. *Journal of Power Sources* **1985**, *15* (2–3), 179–190. <u>https://doi.org/10.1016/0378-7753(85)80071-9</u>.

ICT

Sum, E.; Rychcik, M.; Skyllas-Kazacos, M. Investigation of the V(V)/V(IV) System for Use in the Positive Half-Cell of a Redox Battery. *Journal* of Power Sources **1985**, *16* (2), 85–95. https://doi.org/10.1016/0378-7753(85)80082-3.

PONSORED BY THE

Vanadium redox flow batteries (VRFB) Sumitomo 5 MWh VRFB Yokohama / Japan 2012

Arenas, L. F.; Ponce de León, C.; Walsh, F. C. Engineering Aspects of the Design, Construction and Performance of Modular Redox Flow Batteries for Energy Storage. *Journal of Energy Storage* **2017**, *11*, 119–153. <u>https://doi.org/10.1016/j.est.2017.02.007</u>.

© CENELEST

SPONSORED BY THE

Federal Ministry

of Education and Research

Vanadium redox flow batteries (VRFB) Sumitomo 15 MW / 60 MWh VRFB Hokkaido / Japan 2012

© CENELEST

SPONSORED BY THE

ICT

Vanadium redox flow batteries (VRFB) Cellcube containerised solutions

FB 250 / FB 500 SERIE, RELEASE 4.00

CELLCUBE FB 500-2.000

Der große Energiespeicher mit drei Energie- und zwei Leistungseinheiten. Ideal für den Aufbau industrieller Speicherlösungen.

Nennleistung = 500 kW P max, Ladung = 1.000 kW

CELLCUBE FB 250-1.000

Die kleine Speicherlösung mit zwei Energieeinheiten und einer Leistungseinheit, ideal für den Microgrid-Einstieg.

Nennleistung = 250 kW P max, Ladung = 500 kW P max, Entladung = 375 kW

CELLCUBE FB 250-2.000

Der Energiespeicher mit langem Atem mit drei Energieeinheiten und einer Leistungseinheit. Ideal, um die Nacht durchzumachen.

Nennleistung = 250 kW P max, Ladung = 500 kW

Federal Ministry of Education and Research

16

Vanadium redox flow batteries (VRFB) Rongke Power 200 MW / 800 MWh VRFB

© Rongke Power

Thank you for your attention!

Jens Noack Adj. Assoc. Prof. (UNSW) Dr.-Ing. Dipl.-Ing. (FH)

Fraunhofer ICT

Joseph-von-Fraunhofer-Str. 7 76327 Pfinztal/Germany

jens.noack@ict.fraunhofer.de

CENELEST University of New South Wales UNSW Sydney NSW 2052 Australia

info@cenelest.org

WILEY-VCH Edited by Christina Roth, Jens Noack, and

Flow Batteries

Maria Skyllas-Kazacos

From Fundamentals to Applications Volume 1

