Redox flow batteries for renewable energy storage

As energy storage becomes an increasingly integral part of a renewables-based electricity system, new technologies are coming to the fore. Jens Noack, Nataliya Roznyatovskaya, Chris Menictas and Maria Skyllas-Kazacos from CENELEST, a joint research venture between the Fraunhofer Institute for Chemical Technology and the University of New South Wales, chart the rise of redox flow batteries, a promising alternative to lithium-ion-based systems.

The full length article is available at PV Tech: https://store.pv-tech.org/store/redox-flow-batteries-for-renewable-energy-storage/

The German International Bureau rated CENELEST/Zenith as successful

The International Bureau is a part of the German project management agency DLR-PT and responsible for CENELEST. Via DLR-PT CENELEST is recieving funding from the German Ministry for Education and Research (BMBF) to establish this international collaboration between Germany and Australia for the years 2017-2022. All those involved in establishing the joint research presence thank the help of the International Bureau, DLR-PT and BMBF and are looking forward to further fruitful cooperation and excellent results through CENELEST.

https://www.internationales-buero.de/en/german-australian_centre_for_electrochemical_renewable_energy_storage_technologies.php

Deeper insight into the processes in Vanadium Redox Flow Batteries

Nataliya Roznyatovskaya et al, have published an open acces review article on electron transfer processes for vanadium redox flow batteries. It concerns the complex reactions in diluted and concentrated vanadium electrolyte solutions.
The electrode processes play a decisive role in the efficiency and performance of vanadium redox flow batteries.

https://doi.org/10.1016/j.coelec.2019.10.003

In particular, there is a little-noticed difference in the past between the properties of diluted and concentrated vanadium electrolyte solutions. For example, the results of measurements in diluted solutions cannot simply be transferred to higher and practical concentrations, since the structural properties of the vanadium species and thus also their chemical properties and reaction mechanisms are different.